Cunninghamella as a Microbiological Model for Metabolism of Histamine H3 Receptor Antagonist 1-[3-(4-tert-Butylphenoxy)propyl]piperidine

نویسندگان

  • Elżbieta Pękala
  • Paulina Kubowicz
  • Dorota Łażewska
چکیده

The aim of the study was to analyze the ability of the microorganism Cunninghamella to carry out the biotransformation of 1-[3-(4-tert-butylphenoxy)propyl]piperidine (DL76) and to compare the obtained results with in silico models. Biotransformation was carried out by three strains of filamentous fungus: Cunninghamella echinulata, Cunninghamella blakesleeana, and Cunninghamella elegans. Most probable direction of DL76 metabolic transition was the oxidation of the methyl group in the tert-butyl moiety leading to the formation of the metabolite with I° alcohol properties. This kind of reaction was conducted by all three strains tested. However, only in the case of C. blakesleeana that biotransformation product had a structure of carboxylic acid. CYP2C19 was identified by Metasite software to be the isoform of major importance in the oxidation process in the tert-butyl moiety of DL76. In silico data coincide with the results of experiments conducted in vitro. It was confirmed that Cunninghamella fungi are a very good model to study the metabolism of xenobiotics. The computational methods and microbial models of metabolism can be used as useful tools in early ADME-Tox assays in the process of developing new drug candidates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LC–MS–MS Method for the Analysis of New Non-Imidazole Histamine H3 Receptor Antagonist 1-[3-(4-tert-Butylphenoxy)propyl]piperidine in Rat Serum—Application to Pharmacokinetic Studies

A sensitive and specific liquid chromatography electrospray ionisation-tandem mass spectrometry method for determination of new non-imidazole histamine H(3) receptor antagonist 1-[3-(4-tert-butylphenoxy)propyl]piperidine (DL76) in rat serum has been developed and validated. Chromatography was performed on a XBridge™ C18 analytical column (2.1 × 30 mm, 3.5 µm, Waters, Ireland) with gradient elut...

متن کامل

Binding of 1-[3-(4-tert-butyl-phenoxy)propyl]piperidine, a new non imidazole histamine H3 receptor antagonist to bovine serum albumin.

The degree of binding of a drug to plasma proteins has a significant effect on its distribution, elimination, and pharmacological effect since only the unbound fraction is available for distribution into extra-vascular space. The binding of DL76 (1-[3-(4-tert-butyl-phenoxy)propyl]piperidine) to bovine serum albumin (BSA) was studied in viitro by equilibrium dialysis at 37 degrees C and pH 7.4 o...

متن کامل

BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: Preclinical pharmacology.

Histamine H3 receptor inverse agonists are known to enhance the activity of histaminergic neurons in brain and thereby promote vigilance and cognition. 1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride (BF2.649) is a novel, potent, and selective nonimidazole inverse agonist at the recombinant human H3 receptor. On the stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate bindin...

متن کامل

JPET Miniseries: H3 Receptors Discovery of Histamine H3 Antagonists for the Treatment of Cognitive Disorders and Alzheimer’s Disease

H3 antagonists increase the release of brain histamine, acetylcholine, noradrenaline, and dopamine, neurotransmitters that are known to modulate cognitive processes. The ability to release brain histamine supports the effect on attention and vigilance, but histamine also modulates other cognitive domains such as shortterm and long-term memory. A number of H3 antagonists, including 1-{3-[3-(4-ch...

متن کامل

Intracerebroventricular Injection of Histamine Induces State-Dependency through H1 Receptors

The aim of the present study was to investigate whether and by which mechanism; histamine can induce state-dependent retrieval of passive avoidance task. The pre-training or pre-test intracerebroventricular (i.c.v.) injection of histamine (20µg/mouse) impaired retrieval, when it was tested 24 h later. In the animals, which retrieval was impaired due to histamine pre-training administration, pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 168  شماره 

صفحات  -

تاریخ انتشار 2012